Nutrient depletion in Bacillus subtilis biofilms triggers matrix production

نویسندگان

  • Wenbo Zhang
  • Agnese Seminara
  • Melanie Suaris
  • Michael P Brenner
  • David A Weitz
  • Thomas E Angelini
چکیده

Many types of bacteria form colonies that grow into physically robust and strongly adhesive aggregates known as biofilms. A distinguishing characteristic of bacterial biofilms is an extracellular polymeric substance (EPS) matrix that encases the cells and provides physical integrity to the colony. The EPS matrix consists of a large amount of polysaccharide, as well as protein filaments, DNA and degraded cellular materials. The genetic pathways that control the transformation of a colony into a biofilm have been widely studied, and yield a spatiotemporal heterogeneity in EPS production. Spatial gradients in metabolites parallel this heterogeneity in EPS, but nutrient concentration as an underlying physiological initiator of EPS production has not been explored. Here, we study the role of nutrient depletion in EPS production in Bacillus subtilis biofilms. By monitoring simultaneously biofilm size and matrix production, we find that EPS production increases at a critical colony thickness that depends on the initial 6 Author to whom any correspondence should be addressed. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. New Journal of Physics 16 (2014) 015028 1367-2630/14/015028+13$33.00 © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft New J. Phys. 16 (2014) 015028 W Zhang et al amount of carbon sources in the medium. Through studies of individual cells in liquid culture we find that EPS production can be triggered at the single-cell level by reducing nutrient concentration. To connect the single-cell assays with conditions in the biofilm, we calculate carbon concentration with a model for the reaction and diffusion of nutrients in the biofilm. This model predicts the relationship between the initial concentration of carbon and the thickness of the colony at the point of internal nutrient deprivation. S Online supplementary data available from stacks.iop.org/NJP/16/015028/ mmedia

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poly-γ-Glutamic Acids Contribute to Biofilm Formation and Plant Root Colonization in Selected Environmental Isolates of Bacillus subtilis

Bacillus subtilis is long known to produce poly-γ-glutamic acids (γ-PGA) as one of the major secreted polymeric substances. In B. subtilis, the regulation of γ-PGA production and its physiological role are still unclear. B. subtilis is also capable of forming structurally complex multicellular communities, or biofilms, in which an extracellular matrix consisting of secreted proteins and polysac...

متن کامل

Surface indentation and fluid intake generated by the polymer matrix of Bacillus subtilis biofilms.

Bacterial biofilms are highly structured, surface associated bacteria colonies held together by a cell-generated polymer network known as EPS (extracellular polymeric substance). This polymer network assists in adhesion to surfaces and generates spreading forces as colonies grow over time. In the laboratory and in nature, biofilms often grow at the interface between air and an elastic, semi-per...

متن کامل

Investigation of the effect of biosurfactant of Bacillus subtilis against Staphylococcus strains biofilms

Background: Biosurfactants are compounds that are produced by different microorganisms and have an emulsifying property. This study aimed to investigate extractive biosurfactant from bacillus subtilis (PTCC1720) against the biofilms of Staphylococcus aureus (PTCC 1112), Staphylococcus saprophyticus (PTCC 1440) and Staphylococcus epidermidis (PTCC 1435). Materials and Methods: This study was con...

متن کامل

Galactose Metabolism Plays a Crucial Role in Biofilm Formation by Bacillus subtilis

UNLABELLED Galactose is a common monosaccharide that can be utilized by all living organisms via the activities of three main enzymes that make up the Leloir pathway: GalK, GalT, and GalE. In Bacillus subtilis, the absence of GalE causes sensitivity to exogenous galactose, leading to rapid cell lysis. This effect can be attributed to the accumulation of toxic galactose metabolites, since the ga...

متن کامل

Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species.

Biofilms are densely packed multicellular communities of microorganisms attached to a surface or interface. Bacteria seem to initiate biofilm formation in response to specific environmental cues, such as nutrient and oxygen availability. Biofilms undergo dynamic changes during their transition from free-living organisms to sessile biofilm cells, including the specific production of secondary me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014